狗
年
大
吉
HAPPYNEWYEAR
limma
suppressPackageStartupMessages(library(CLL))
data(sCLLex)
exprSet=exprs(sCLLex)##sCLLex是依赖于CLL这个package的一个对象
samples=sampleNames(sCLLex)
pdata=pData(sCLLex)
group_list=as.character(pdata[,2])
dim(exprSet)
[1]
exprSet[1:5,1:5]
CLL11.CELCLL12.CELCLL13.CELCLL14.CELCLL15.CEL
_at5.....
_at2.....
_f_at3.....
_s_at1.....
_at7.....
par(cex=0.7)
n.sample=ncol(exprSet)
if(n.sample40)par(cex=0.5)
cols-rainbow(n.sample*1.2)
boxplot(exprSet,col=cols,main="expressionvalue",las=2)
suppressMessages(library(limma))
design-model.matrix(~0+factor(group_list))
colnames(design)=levels(factor(group_list))
rownames(design)=colnames(exprSet)
design
progres.stable
CLL11.CEL10
CLL12.CEL01
CLL13.CEL10
CLL14.CEL10
CLL15.CEL10
CLL16.CEL10
CLL17.CEL01
CLL18.CEL01
CLL19.CEL10
CLL20.CEL01
CLL21.CEL10
CLL22.CEL01
CLL23.CEL10
CLL24.CEL01
CLL2.CEL01
CLL3.CEL10
CLL4.CEL10
CLL5.CEL10
CLL6.CEL10
CLL7.CEL10
CLL8.CEL10
CLL9.CEL01
attr(,"assign")
[1]11
attr(,"contrasts")
attr(,"contrasts")$`factor(group_list)`
[1]"contr.treatment"
contrast.matrixmakeContrasts(paste0(unique(group_list),collapse="-"),levels=design)
contrast.matrix
Contrasts
Levelsprogres.-stable
progres.1
stable-1
fit-lmFit(exprSet,design)
fit2-contrasts.fit(fit,contrast.matrix)##这一步很重要,大家可以自行看看效果
fit2-eBayes(fit2)
tempOutput=topTable(fit2,coef=1,n=Inf)
nrDEG=na.omit(tempOutput)
head(nrDEG)
logFCAveExprtP.Valueadj.P.ValB
_at-1..-5..e-..
_at0....e-..
_at1....e-..
_at-1..-5..e-..
_at0....e-..
_at2....e-..
预览时标签不可点收录于话题#个上一篇下一篇