主成分分析PCA

能不能治疗白癫病 http://m.39.net/pf/a_4793212.html
主成分分析PCA

本节作者:刘华,中国科学技术大学

版本1.0.3,更新日期:年6月18日

什么是PCA(PrincipalComponentAnalysis)相关背景

在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律。多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的工作量。更重要的是在很多情形下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性。如果分别对每个指标进行分析,分析往往是孤立的,不能完全利用数据中的信息,因此盲目减少指标会损失很多有用的信息,从而产生错误的结论。

因此需要找到一种合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损失,以达到对所收集数据进行全面分析的目的。由于各变量之间存在一定的相关关系,因此可以考虑将关系紧密的变量变成尽可能少的新变量,使这些新变量是两两不相关的,那么就可以用较少的综合指标分别代表存在于各个变量中的各类信息。主成分分析与因子分析就属于这类降维算法。

数据降维

降维就是一种对高维度特征数据预处理方法。降维是将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。在实际的生产和应用中,降维在一定的信息损失范围内,可以为我们节省大量的时间和成本。降维也成为应用非常广泛的数据预处理方法。

降维具有如下一些优点:

(1)使得数据集更易使用。(2)降低算法的计算开销。(3)去除噪声。(4)使得结果容易理解。

降维的算法有很多,比如奇异值分解(SVD)、主成分分析(PCA)、因子分析(FA)、独立成分分析(ICA)。

PCA的概念

PCA(PrincipalComponentAnalysis),即主成分分析方法,是一种使用最广泛的数据降维算法。PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相关的。其中,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第1,2个轴正交的平面中方差最大的。依次类推,可以得到n个这样的坐标轴。通过这种方式获得的新的坐标轴,我们发现,大部分方差都包含在前面k个坐标轴中,后面的坐标轴所含的方差几乎为0。于是,我们可以忽略余下的坐标轴,只保留前面k个含有绝大部分方差的坐标轴。事实上,这相当于只保留包含绝大部分方差的维度特征,而忽略包含方差几乎为0的特征维度,实现对数据特征的降维处理。

变换的步骤

①第一步计算矩阵X的样本的协方差矩阵S(此为不标准PCA,标准PCA计算相关系数矩阵C):②第二步计算协方差矩阵S(或C)的特征向量e1,e2,…,eN和特征值t=1,2,…,N;③第三步投影数据到特征向量张成的空间之中。利用公式,其中BV值是原样本中对应维度的值。

PCA的目标是寻找r(rn)个新变量,使它们反映事物的主要特征,压缩原有数据矩阵的规模,将特征向量的维数降低,挑选出最少的维数来概括最重要特征。每个新变量是原有变量的线性组合,体现原有变量的综合效果,具有一定的实际含义。这r个新变量称为“主成分”,它们可以在很大程度上反映原来n个变量的影响,并且这些新变量是互不相关的,也是正交的。通过主成分分析,压缩数据空间,将多元数据的特征在低维空间里直观地表示出来。

PCA实例PCA+特征箭头

华大基因研究团队发表于Microbiome的文章(Zhongetal.,),研究早期事件和生活方式对幼龄儿童肠道菌群和代谢的影响。在这里,我们选择了文章中两个PCA分析结果图为例进行讲解:

图1c.属水平PCA主成分分析

Figure1c.Genus-basedprincipal


转载请注明:http://www.bjgongshangzhuce.com/jyyf/8072.html


当前时间: